
' ~Ag =2 'f .ad-AlA

Nonparametric e ;timation of trends in linear
stocastic systems

Ian W. McKeague*

Department of Statistics
Florida State University, Tallahassee, Florida 32306-3033

and

Tiziano Tofoni

Postgraduate School of Telecommunications
G. Reiss Romoli, 67100 L'Aquila, Italy

FSU Technical Report No. M-814
USARO Technical Report No. 107

September, 19S9 DT1C
ELECTE
S;1.23198u

A3IS 19SO subject classificalions. 62G05. 62M09, 93E12.

Key words and phrases. Kalman-Bucv filtering, linear periodic systems. nonparamet-
tic trend estimation, method of sieves. kernel estimators. Volterra integral equations.

Research supported by Army Rcsear, i Office Grant DAAL03-6-K-0094.

A'd:o(AJ_



Abstract

Techniques for the estimation of unknown additive trends present in the state and mea-
surement processes of a Kalman-Bucy linear system are introduced. We obtain asymptotic
results describing the performance of the estimators under i.i.d. and periodic observation
schemes. The observed process is given by dY() = g(f)dt + dZ(t), where Z is the mea-
surement process and g is an uinknown tre-nd function, and there is an additiv- treed f
present in the state process X. These two cases need to be treated separately in order
to ensure identifiability. The problem is to estimate f and g, and remove them from
the measure\knt process. Trend removal involves replacing f and g in the Kalman filter
Xk(t) = E(X(1)J.Ff)-based on observation of Y-by appropriate estimates. We show that
this can be done under the following observation schemes: (I) n i.i.d. replicates of Y over a
fixed interval [O,T], (11) observation of a single trajectory of Y' over a long interval [0, nT].
where f, g and the functions defining the linear system are periodic with period T.
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1. Introduction

Consider a linear stochastic system of the type introduced by Kalman and Bucy
(1961): A p-dimensional "state" process X and a q-dimensional "measurement"
process Z are given by the stochastic differential equations

dX(t) = A(t) X(t) dt + B(t) u(t) dt + dW(t)

dZ(t) = C(t) X(t) dt + dV(t)

0 < t < T, where TV and V are independent p and q-dimensional Wiener pro-
cesses, u(-) is a known deterministic input, A, B, C are known non-random time-
varying matrices of suitable dimensions, X(0) is independent of W and V, the
mean E(X(0)) = m and covariance matrix of X(O) are known, and Z(0) = 0. The
Kalman filtering theory provides recursive formulae for the conditional expectation
X(t) = E(X(t)].z) which is the optimal mean square estimate of the state X(t)
given the past .Fz = a(Zs, 0 < s < t) of the measurement process, see Liptser and
Shiryayev (1978) and Kallianpur (1980).

In real applications of the Kalman filter to signal processing it is often found
that unknown additive trends are present in the state and measurement processes;
that is, the state process X is given by

dX(t) = f(t) dt + A(t) X(t) dt + B(t) u(t) dt + dWl(t) (1)

and instead of observing Z, we observe the process Y given by

dY(t) = g(i) dt + dZ(t), Y(0) = 0, (2)

where f and g are unknown "trend" functions.
In the present paper we shall consider the problem of estimating the trends f

and g and removing them from the measurement process. Trend removal amounts
to replacing the functions f and g used in the Kalman filter X()(t)J.Tj ) -

based on observation of Y-by appropriate estimates f and P.
Two types of observation scheme are considered:

(I) n realizations { ](t), t E [0,T], i = 1,...,u} of the process Y satisfying (1)
and (2) with the corresponding system realizations having independcnt noisc
processes Wi and Vi, i = 1,.. . , n.

(II) observation of a single trajectory of Y over the interval [0, nT], where the
functions f, g, .4, B and C are periodic with period T.

Observation scheme (II) is relevant to situations where there is a "time-of-day'"
or "seasonal" effect present in the model; for example. in the analysis of circadian
rhythm data in biology, or in the study of cyclic systems in control engineering-
see the rview article of Bittanti and Guardabassi (19S6). We are interested in the
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asymptotic properties of estimators of f and q as n -- oo with T remaining fixed.
We shall see that f and g are not identifiable unless one of them is absent from the
model (i.e. f = 0, g # 0 or f 5 0, g = 0).

There is a vast literature on the estimation of finite dimensional parameters
in discrete time linear stochastic systems; refer to the books of Davis and Vinter
(1984) and Kumar and Varaiya (1986). In continuous time such problems were first
studied by Balakrishnan (1973). Further contributions have been made by Bagchi
(1980), Tugnait (1980) and Bagchi and Borkar (1984). Nonparametric estimation
for linear stochastic systems is considered to be a difficult problem; see, for instance,
the closing comment of a recent paper of Aihara and Bagchi (1989). In general the
functions A, C, f and g are not even identifiable. In the present paper we are
studying the very special case in which A, B and C are known, and at least one of
the trend functions is known to be absent.

There is an extensive literature on nonparametric estimation for the drift (or
trend) function, g, in a diffusion process satisfying (2) with Z as a Wiener process;
see Ibragimov and Khasminski (1980, 1981), Geman and Hwang (1983), Nguyen
and Pham (1982), Beder (1987), McKeague (1986)-who allowed Z to be a general
square integrable martingale, and Leskow (1989)-who considered the case of a
periodic model. These authors use either Parzen-Rosenblatt type kernel estimators
or Grenander (1980) sieve estimators for g, but those estimators are not directly
applicable to the present setting, unless C is identically zero (in which case only g
is identifiable). We shall find that there is a function h, related to g and f through
two Volterra integral equations, and h can be estimated by kernel or sieve type
estimators. Estimates of g and f can then be obtained by inserting estimates of h
or its first derivative h' in the solutions of the Volterra integral equations.

The paper is organized as follows. Sectior 2 contains introductory discussion
concerning the basic innovations represent Ko,. of the observation process, identifi-
ability, bias under misspecified trends, and -'nes (I) and (II). Estimation of the
trend in the measurement process under schemes (I) and (II) is treated in Sections
3 and 4 respectively. In Section 5 we consider estimation of the trend in the state
process. In these sections, to simplify the presentation, we assume that the state
and measurement processes are one-dimensional (p = q = 1). Section 6 contains
remarks on the multi-dimensional case. In Section 7 we indicate some directions for
further work.

To conclude this section we shall briefly put our problem in perzpcctive with
other inference problems for stochastic processes. Statistical models for stochastic
processes are of two broad types. If we observe a process V = (1', t > 0) and we
have a covariate process X = (X 1 ,t > 0) to incorporate into the analysis. then we
may consider a partially specified model in which, loosely speaking (see Greenwood
(1988) for a more Jre"s defbition), cn]5 ,hc tiI distribution of' 1' given X
is specified in terms of an unknown parameter 0. Alternatively, we may know the
full joint distribution of (Y,X) for each 0, in which case we have a fully specified
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model. Partially specified models are especially useful and widely applied in the
analysis of life history data by taking Y as a counting process describing the times
of events in the life of an individual, and X representing a covariate process specific
to the individual-the structure of the marginal distribution of X being unspecified;
see Arjas and Haara (1984) and Andersen et al. (1988). Fully specified models on
the other hand are widely used in the engineering sciences where precise models
for the covariate process X can often be developed from well-understood system
dynamics. Our model is of this latter type.

Observation schemes may similarly be classified into two broad types: partial
and full. In the survival analysis setting partial observation may arise from censor-
ing, truncation, or grouping of the data, see Andersen et al. (1988) and McKeague
(1988). It arises in the stochastic systcms setting when the state of the system is
observed in the presence of noise, as in (1). Despite the diverse applications of such
schemes and models, there is a surprising unity to the techniques used. For example,
our kernel function techniques are similar to the methods used by Ramlau-Hansen
(19S3) for the estimation of counting process intensities, and our approach to the
periodic case in some ways resembles that of Pons and de Turckheim (1988) to Cox's
periodic regression model.

2. The innovations representation

We shall assume throughout that the functions f,g, A, B, C and u are smooth,
and C(t) does not vanish anywhere on [0, T]. The equations for the Kalman-Bucy
filter (see Kallianpur 1980, Section 10.3) are

dX7(t) = [f(t) + A(t) A(t) + B(t) u(t)] dt + D(t) dv(t)

dv(i) = dY(t) - [g(t) + C(t)X(f)] dt,

where .'X(0) = in. The process v is the so-called innoz'ations process which is known
to be a standard Wiener process. The function D is the Kolrn an gain which in the
present set-up does not depend on f or g. In fact D(t) = C(f)P(t), where P is the
unique positive solution to the Riccati differential equation

P'(t) = 2A(t)P(t) - C 2(t)P 2 (t) + 1. (4)

with initial condition P(0) = Var(X(0)). From (3) we have

dX(t) = [A(t) - D(t) C(f)]X'(t) dt + [f(t) + B(t) z(t) - D(f) g(t)]dt + D() dY'.

Using Theorem 4.2.4 of Davis (1977) we can solve this equation for . Substituting
the solution into the the second equation in (3) we obtain the following innovations
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representation for Y:

pt

Y(t) = [h(s) + U(s)] ds + v(t), (5)

where

h(t) = g(t) + C() j 'I(t, s)[f(s) - D(s) g(s)] ds. (6)

Here I(t, s) is the solution to the linear time-varying system

a\ t, =) [A(t) - D (t) C(t)] T(t, s), %P(s, s)=1

and U is given by

U(t) = C@t){ 'P (t,)mr + P TI(, s)[B(s) u(s) ds + D(s) dl'(s)]}.

The representation (5) will be of prime importance in the sequel.

Idenifiability of f and g.
We see from (5) that the function h is identifiable given observation of Y and

U; however, f and g are identifiable only in so far as they are uniquely determined
in terms of h through (6). Thus, the functions f and q are not in general simulta-
neously identifiable from observation of Y. However, if the trend is absent from the
measurement, process (g = 0) then (6) reduces to

h(t) = 4(t, s) f(s) ds, (7)

where 4(t, s) = C(t) T(t ,s). If the trend is absent from the state process (f 0)
then (6) reduces to

1,(t) = g(t) + r(t., S) 9(s) dS. (s)

where F(t, s) = - C(t) ,I,(t, s) D(s).
As equations involving the unknown f and g, (7) and (8) are io tu r lol(rra

irc'grai equations of the firsi and s*econd kind respectively. It follows from standard
results on Volterra equations (see Linz, 1985) that (S) has a unique solution for g.
and (7) has a unique solution for f provided C(t) does not vanish on [0. T]. Since
71 is identifiable, the trend f is identifiable when g = 0. and g is identifiable when
f=0.
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The log-likelihood function.
The innovations representation (5) allows us to write down an explicit ex-

pression for the log-likelihood function L(h) = log(dPh/dpwj](Y), where Ph is the
measure induced on C[O, T] by Y, and Pw is Wiener measure. By Liptser and
Shiryayev (1977, Theorem 7.7) we have that ph < pw and

ST 1 T
L(h) = 0r(s)dY(s) - 7 J r2(s)ds (9)

Jo 2 Jo

where r(s) is the term inside the square brackets in (5).

The bias caused by misspe, ifed trends.
What is the effect on the mean square error of the Kalman filter (3) of using

incorrect trend functions f* 5 f, g* 5 g? The answer to this question should
provide us with a modus operandi for choosing estimators f, to be used in place
of the unknown f, g. Let Xf'g,(t) denote the Kalman filter estimate of X(t) based
on (3). The bias caused by using f*, g* instead of f, g at time t,

BIAS(f*,g*, t) =_= kfg* (t) - fg(),

can be found from (3), cf. Jazwinski (1970, p.252),

BIAS(f*,g*, t) = j I(t, s)[f*(s) - f(s) + D(s) (g(s) - g*(s))] ds.

The increase in the mean square error caused by using estimators f*, g* instead of
f g is solely due to this nonrandom bias and is given by [BIAS(f*., g* t)] 2 .

Observation scheme (I).
The processes associated with the ith realization are given the subscript i., as in

Ii. ui, Ui, Li(h) etc.. Note that although the observed processes { 1  i = 1 7}
are independent, they are not necessarily identically distributed since the inputs ti

are not assumed to be identical for each i. However, the innovations processes vli
are i.i.d. Wiener processes. From (5) we have

i() = J [h(s) + U,(s)J (s + ,,(t), (10)

wx here

U2(t) = C(t){14(t, 0) 77 + j 4)(t. 8)[B(s) ut(s) ds + D(s) dls)}0'
The log-likelihood function L(")(h) is given by

1L ln)(q) Li (h,)
5=1

. . ...... ~i~ilmanimaamammlilln maa n Nil I I



Observation scheme (II).
Scheme (II) can be treated using a similar framework to scheme (I). Let hi, Ui,

Yi and vi be the following restrictions of h, U, Y and v to the i-th period:

hi(t) = h(iT + t)

Ui(t) = U(iT + t)

Yj(t) = Y(iT + t) - Y(iT)

Vi(t) = v(iT + t) - v(iT)

0 < t < T. These processes satisfy

=() 1 [hi(s) + Uj(s)] ds + vj(t). (10')

Since v is a Wiener process (which has stationary independent increments), the
processes vi, 2 = 1,..., n are also i.i.d. Wiener processes on [0, T]. The log-likelihood
function Lt ")(h), given by (9) with with T replaced by nT, can be written as

n

L(n)(h) = ZLi(h,).

Note that the function h is not periodic so that hi h. This is the basic difference
between schemes (1) and (II), making (II) much harder to analyze.

3. Trend in the measurement process-i.i.d. case

In this section we consider estimation of g under scheme (1) with f = 0. First
we introduce estimators of g such that BIAS(0, . f) 0 uniformly in f as 7 -, cc

a.s.. In fact, a fortiori, will be shown to be strongly LP-consistent in the sense
that jig - .fll 0 as n -- co, where jj denotes the norn in L 2[0, T].

The basic idea is to take as an estimator of g the solution of the Volterra
integral equation

,(t) = (t)+ ,, ),(t ) s. (11)

where hi is an estimator of h. Note that the estimator so obtained is well defined
since (11) admits a unique solution whenever b E L 2 [0, T]-see Davis (1977, p.

125). Moreover, should h be a strongly L 2-consistent estimator of 1?, the following
theorem shows that is also strongly LP-consistent.
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THEOREM 1. Let h be a strongly L 2-consistenit estimator of h. Then the solution
of the Volterra integral equation (11) is a strongly L 2-consistent estimator of g.

PROOF: Let h = h-h and g = -g be the estimation errors of h and respectively
and denote Al = supt,sE[0,T] I(t,s) < ce. Now from (8) and (11)

9(t) = h(t) - (t, s) g(;) ds

so that

Ip(t) 12 < 2TMA2 f I(S)12 ds + 21h(t)12 .

Using Gronwall's inequality (see Kallianpur, 1980, p.94) we then have

Ig(t)12 < 4TM 2 j Ih(S)1 2 exp[2TM 2(t - s)] ds + 21h(t)1 2

0'
<4TM2 exp[2T 2 M2 ] [h(s)[2 ds + 2[h(t)[2 .

Integrating this last ;nequality over the interval [0, T] we easily get
11g1 2 < (2 + 4T2_1 2 exp[2T 2 ]j)Ih I 2 .

This completes the proof. 0

Orthogonal series sieve estimators for h.
The maximum of the log-likelihood function L(")(h) is not attained when we

maximize over the whole parameter space L 2 [0,T]. The problem is that the pa-
rarneter space is too large for the existence of the unconstrained maximum like-
lihood estimator. One remedy is to apply the mcthod of sieves which consists
in maximizing the log-likelihood function over an increasing sequence of subsets
S,n = 12,... of the parameter space. We shall use an orthogonal series sieve

S, = span{,r, r = 1 .... d,,], where {l'r r > 1} is a complete orthonormal
sequence in L2[0, T] and d,, --+ oc as n -+ oo.

Let the coordinates of h C L 2 [O. T] with respect to the basis { -r 1) b
denoted (h, r > 1) and denote the vector (h] .  d,, )' by h ("). Then. omitting
terms not involving h. for h E S,

L(",)(hi) = ht,,)'(Q (") - P(,")) - 17h(,,/'h(,,) (12)
2

where Q(') and P(W) are d,, x 1 vectors with components

r ET

=10

P = ' U(t) dr.

pmri /



Maximizing (12) with respect to h(") we obtain

d,,

L(t) h r-, ?i ,(t) (13)
r= 1

where (  = [h 1 ,.., haj' is given by

f1(n) = l(Q(n) _ p~n)). (14)
(14

THEOREM 2. Suppose that d, -+ oo and dn/n -+ 0 as n -- oc. Then the orthogonal
series sieve estimator h given by (13) is a strongly L2-consistent estimator of h.

PROOF: It suffices to show that Ilfi n) - h(") [ 0, where 11 11 can also denote the
euclidean norm, depending on the context. By (10) and (14) the rth component of
fl(n) - hI( -) is given by

(f(n-) h(n)r - 4)

where

fr) = 72 e,¢ ,,()

for r =1....,dn. Thus

llI(' - ht"ll =1 (H2 :
1 1 f , ( - )-- 1 1 1

Now e r 1,....d, are i.i.d. N(0,1) r.v.'s s- that 7i111fi ( ) - h(")l112 has a
dlsui)uton with d, degrees of freedom. The proof is now completed using the
Boic] -Cantel]i type argument given by Beder (1987. Section 5). E

R n, ark. The rate d, o(n) is the best possible for L2-consistency of the orthogonal
series sieve estimators. cf. McKeague (19S6) and Beder (1907).

KCr'n c(imators for h.
Let K be a bounded kernel function having integral 1, support [-1. 1] and let

),b > 0 be a bandwidth parameter. Define

h,() = 1j (t s dH (s). (15)
1 f Tr. (

7' ] f '()- u,(s,)d. (20)
t i=1 ).

I n Ifl~t 3 ~t) i S



Here !H(t) estimates the function H(t) = fo h(s) ds.

THEOREM 3. Suppose that b, --+ 0 and b,,ni - -- 00 for some 0 < 6 < 1. Then
the kernel estimator h given by (15) is a strongly L 2 -consistent estimator of h.

PROOF: First note that since h is continuous, IIh(") - hJI - 0 where h( ' ) is the
following smoothed version of h

1 fT/t--\

h(")(t) = 1 fK(tI h(s)ds.

It remains to show that 1ih - 07)1a-,0 From (15)
( n) "(t) I ( (n) ("(t),

where

and 10"' ) = v'i(fl - H). It follows from (10) and (16) that 11( " ) is a standard
Wiener process for all 77. Thus E(")(t) is Gaussian with mean zero and variance

-1- 2 S) ds < - 2 (u)du.

Fix ?- > 0 and let k > 1/6. Applying H6lder's inequality on [0. T]. Fubini's Theorem.
and noting that the 2k-th moment of c(n)(t) is uniformly bounded in n and f we get

E11h - 11(")112k < 1 T- - E(("'I() )2k (t

= O((r - kb ).

B y Chel)shev's inequality

p(1jl, _ 11("0 11 > q - Ii (,l = 0 , - '

aild since A-6 > 1 we have

oo"P( i - 00 l > ,1) < CV
n1l

for all 71 > 0. The Borel-Cantelli lemma gives b -1111O. 0]
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Asymptotic distribution results for estimators of g.
Let -(t, s) be the resolvent kernel for F(t,s), so the unique solution of (8) is

given by

g(t) = h(t) + j y(t, s) h(s) ds, (17)

see Linz (19S5, Theorem 3.3). Note that h(.) may be considered as the output of
the linear system

z'(t) = [A(t) - C(t)D(t)]z(t) + D(t)g(t), z(O) = 0

h(t) = g(t) - C(t)z(t).

After a trivial manipulation L.his may be written as a linear system with input h(.)
and output g(.):

z'(t) = A(t) z(t) + D(f) h(t), z(O) = 0

g(t) = C(t) z(t) + h(t).

So we rmay identify the resolvent kernel I a-

-(t- s) = C(f)TA(fts)D(s). (iS)

where T'A is the transition function of the system X'(t) = A(t)x(t).
Let the estimator of g corresponding to h be denoted ., so that . is the solution

of the Volterra integral equation

h) (i ) + j0 T(t. s) n(s) ds.

Now we can write explicitly as

gtt)= h(t) + j (t, s) 7(s) ds. (19)

Our iiext result makes use of (19) to derive the asymptotic distribution of .

TtlEOREM 4. Suppose that 7ib, --4 _c and 7nb a - 0. Then for each 0 < t < T

(nb) 2(W(t) - g())-.KV(0. K 2).

whcre , = f1 1 i, 2 (u)d(hI.

PROOF: From (17). (19) and the proof of Theorem 3 we have

(,,b,,)2 I(f) - 9(t)) = E'T)(t) + (71bn)2-1(t() -t,(t )
, 1 ~ (20)

+ bn,/i"(I) + (,,,) -( 1. )(b~c")(s) - h(s))ds.

10



where 7() (t) 1 j'(t,s) K -v dIVn)(v)ds.

The first term e(n)(t) on the right hand side of (20) is Gaussian with mean zero and

vrariance
IJT K2- s -+2,

so that n(")(t)--'+N(O, K2 ). The remaining terms tend to zero in probability. For,

using a Fubini theorem for stochastic integrals (see Liptser and Shiryayev, 1977,
Theorem 5.15) we have

() (t)= .J( , (, T v ) dsdlV(")(v),

so that q (n")(t) is Gaussian with mean zero and variance

D i , - [) d

fT5  ft s-v

Thus the third term on the right hand side of (20) is of order Op(V2b;). Since h is

Lipschitz, the second and fourth terms are of order O(j17-/3). E]

An alternative estimator for g based on the resohent equation.

An equivalent way of writing equation (17) is

g (t) = h1(t) + fo ,(t. s) dH(.s).(2

so a' "x eina+ire estimator for g is

t(') = h() + ] (t.s)ds) (22)

,, '1re h and H are given by (15) and (i6). Not surprisingly. !a(t) has the same

asymptotic distrilution as

TIIFOREM 5. Suppose that Cb,, and nlb4 0. Then for each 0 < t < T

(n b,) M- g(t)) - (0. ).

1



where K2 = ,_ K 2 (u)du.

PROOF: From (21), (22) and the proof of Theorem 3 we have
()- g(t)) = )(t) + (nb.)1(h t ")(t) - h(t))

+ bn' j1 (t, s) dI(n)()'D 2

By the proof of Theorem 4 the first term c(")(t)2 N(0, K2). The second term is of
order O(\n' ,), as in the proof of Theorem 4. Since the processes 10n), n > 1 are
standard Wiener processes, the last term is of order Op(/-). 0

4. Trend in the measurement process-periodic case

In this section we consider estimation of g under scheme (II) with f = 0 and
the functions g, A, B and C assumed to be periodic with period T. We need some
preliminary results.

PROPOSITION 6. (Bittanti et al., 1984). If the pair (A(.), 1) is completely control-
lable and the pair (.4(.), C(.)) is completely observable then there exists a unique
positive T-periodic solution P to the Riccati differential equation (4). Moreover,
'I, obtained by replacing P by P in the definition of TI, is uniformly asymptotically
stable, i.e. there exist positive constants K, and K 2 such that

I'I'(t,s)l < K exp[-K 2 (t - s)], for all s < t.

In the scalar case (p = q = 1), the pair (A(.). 1) is always completely control-
]able, and the pair (A(.), CQ.)) is completely observable under our assumption that
C(.) never vanishes on [0., T], see Rubio (1971, Chapter 5). Thus Proposition G can
be applied directly in that case. Anyway, the hypotheses of Proposition G arc very
natural in the context of linear systems (see Rubio. 1971, Chapter 5).

We shall need the following assumption:

(A) f t q 'A(t~s)ds < co and f t 1(t2 )ds < oc, for all i C [0, T].

Now introduce the function

bm(l) = g(t) + j (t, s)g(S) ds, (23)

where F(t, s) = -C(t)4'f, s)C(s)P(s). Also define 5(I, s) = C(f).'A(I, s)C(s)P(s).
The following lemma shows that there is a useful analogy to the important repre-
sentation (17) in the periodic case, with the functions h2, and § playing sinilar
roles to 1 and -y.

12



LEMMA 7.
(a) h,,(.) is T-periodic.
(b) There exists a positive constant R such that SUPtE[o,T] Ih,(t)-h, (t)l = O(C- R)

as -* oo.
(c) If f q1 A(t,s)ds < oo, then

g(t) = ho(t) +1 ;'(t,i)ho,(s)ds, t E [0, T]. (24)

PROOF: From the standard theory of linear O.D.E.'s

I11(t, s) = exp {Ii 1 [A(ti) - C 2 (U )P(u)] d.}

so that, by the periodicity of A, C and P, 11 has the property

'(iT + , iT + s) = (t, s) for all s < t. (25)

This property also holds for r. Part (a) then follows using the periodicity of g.
Next, letting hi be defined by replacing r by r in the definition of hi, we have

hi(t) = g(iT + t) + r(i:T + t, iT + s)g(iT + s)ds

= g(t) + (t(, s)g(s) ds

-iT

= h (t)J r(t, s)g(s) ds. (2G)

Note that g(s)r(t.s) is uniformly asymptotically stable by Prcposition 6 and the
boundedness of g and C. Thus by (26) and elementary integration, supIE[0.7 1 jb1i(t)-

,(Y) = O(e - Ri) as i -- cc. Here and in what follows. R denotes a generic positive
constant which does not depend on T and which may change from use to use. To
complete the proof of (b) we need to show that suptE[0 .T] 11, (t) - h1,(t ) =(6 - Ri)

asi - cc. Now,

Ih,(y) - Ii(t)I _ f F(iT + t, s) - r'(iT + 1.s) d.-

iT+t

< 0(1) 14',(iT + t,s) - q,(iT + .s)Ids

iT+
+0O(1) f 4(iT + f. s)l( ) - P(,, )I d, (27)

13



since P(.) is bounded by Roitenberg (1974, p.42 5). The first term in (27) is bounded
above by

1) j (iT + t, s)Cea C 2 P()[P()-P(u)l du _ ds

+0(1)1 P(iT + t, s)efa C,)[P(,)-P(,)l , _d

Use asymptotic stability of 'I to bound the sum of the first [i/2] terms above by
O(e-iR). We can also bound the sum of the remaining terms by O(e - iR) as follows.
Writing Pj(u) - P(iT + u) for 0 < u < T, use the rate

sup IPi(U) - P(u)I = O(e-R), (28)
vE[O,Tj

given by Roitenberg (1974, Th~orbme 6, p.431), to obtain for s E [(r - 1)T, rT]

iT-It i+I1 j T

C2 (u) P(u) - P(u)Idu <0(1) E JP(u) - Pj(u)Idzi
j=r-1

i+1

<o(1) E e-Rj =O (f-Rr),
j=r-1

uniformly in i. Then, also using the inequality Ifs - 11 < 31xl for IxI 1. the sum

of the "remaining terms" above has the form Zr=[i/ 2]+3 Q( Fr) = Q(CR as
required. The last term in (27) is treated in a similar fashion. This proves (b).

Under the hypothesis of part (c), the kernel satisfies f' 5(t. s) ds < cc.
Also note that - satisfies the property (25). Thus, since g is T-periodic.

g(t) = g(iT + t) = hi(t) + J (iT + f, iT + ds)h,(),d.

= hi(t) + 5(t, s)/b(s) ds + 0(1) )1P,(s) - P(s'i l

i --T IiT

-- h,(t) + 5(t, s) h,(s) ds,

as 2- c, by the dominated convergence theorem. part (b) of the lcmma, and (2S).
This proves (c). 0

With the help of Lemma 7 it is now possible to develop results a.nalogous to
those of Section 3. For the purposes of illustration we shall discuss kernel estimators.

14



Define the kernel estimator h,, of h, to be the T-periodic function coinciding with
h given by (15). Then, in view of (24), it is natural to estimate g by

rt
h(t) = h(t) + J 0'(t, s) h,(s) ds, t E [0, T]. (29)

THEOREM 8. Suppose that (A) holds. Then the entire statement of Theorem 4
carries over to the periodic case, giving the asymptotic distribution of the estimator
0 defined by (29).

PROOF: The proof is very similar to the scheme (I) case. Use (24) and (29) to
obtain a periodic version of (20):

I ) (30)
+ bW7(-)(t) + (0b)2 __%(t,s)(h*(s) - h (s)) ds,

wvhere

= 1 K t - s

jjr(=) = vl(# - )

[(-)jt = hi(s)] ds, f E [0, T]

h* is the T-periodic extension of

1()-1 ,, 1) ,-(iJ s.s n oT1i b, [ E- [l hi(-,)], . t E[0, T)

to the whole real line. and

71(n) (t) = f T .(t, s) K (s v) ds.(.).

It follows friom (10') and (16) that 11)' is a standard Wiener process for all n. so
that, as in tlie proof of Theorem 4. c 1(t)--,N(0, K2 ). By Lemma 7 (b)

Sill) h,(S) - 1(S) = 0(7 - )

15



so that, since h,, is Lipschitz, the second term on the right hand side of (30) is of
order

(nb.)i(h*(t) - h -(t)) = + Q(Vln).

Using Condition (A) it can be shown that the last term on the right hand side of
(30) is of the same order. Using Condition (A) again, the third term can be shown
to be of order Op(VIF), as in the proof of Theorem 4. 0

5. Trend in the state process

Throughout this section it is assumed that the trend in the measurement pro-
cess is zero. We shall introduce an estimator f of the trend f in the state process
such that BIAS(f,O,t) -- 0 uniformly in t as n -- oc a.s.. In fact f is shown to
be strongly L 2-consistent. We shall only consider the case of observation scheme
(I) since our results can be extended easily to scheme (II) along the lines that we
extended our results on estimation of g in Section 4.

To estimate f we need to consider (7), which is a linear Volterra integral equa-
tion of the first kind. The usual way to deal with such equations is to convert them
into Volterra equations of the second kind by differentiation, see Linz (19S5, p.67).
In fact, using this technique, we may solve (7) explicitly for f. Since C(t) does not
vanish on [0, T], we obtain

f(t) = + F(t)h(t) (31)

where

F(t) = D(t) - C'(t) A(t)

Thus the problem of estimating f is similar to the problem of estimating g. except
that now we need to estimate h' as well as h. We shall only consider kernel es-
timators of h', although trigonometric series sieve estimators (see Ibragimov and
Khasminski, 19S0) could equally well be used.

Let K be a kernel function, as in Section 3, but in addition assume that K is
differentiable. Let c, be a bandwidth parameter, different from b,,. Define

71 -0~ -s
1't = - / 'y S dHJ(s). (32)232

The following result., stated without proof, is similar to Theorem 3.

16



THEOREM 9. Suppose that c, -- + 0 and c~nS- -_ oo where 0 < 6 < . Then the
kernel estimator h' given by (32) is a strongly L 2-consistent estimator of h'.

In view of this result and (31) it is reasonable to estimate f by

( = (t + F(i)h(t), (33)

where h, given by (15), is the kernel estimator of h. Under the joint conditions of
Theorems 3 and 9 we see that f is a strongly L 2 -consistent estimator of f. Finally,
we give an asymptotic distribution result for f.

THEOREM 10. Suppose that nbn -* co, nb' --+ 0, nc 3 -- ,nc 5 --- 0andc

o(b, ). Thcn for each 0 < t < T

(nc ) (f(t)- f(t)) N( 0, a 2 (t)),

wh ere where f' K'(u)2 du
a 2(c(t)) 2

PROOF: Directly from (31) and (33)

(-7cn 2(f(t) f f(t)) = (c(t))- (,c')(77C,(O - h,'(t))
3 1.

+ F(t) (.)(nbn)(h(t) - h,(t)).

It can be shown, using a sinilar approach to the proof of Theorem 4. that the first
term on the right hand side tends in distribution to _(0' U2 (t)). Also froma the

proof of Theorem 4. and using the condition c, = o(bl ), the second term on the
right hand side is seen to be of order op(l). 0

6. The multivariate case

In the general case in which the state and measurement processes are p and
q-dimensional, our results are modified in obvious ways to take into account the fact
that A, B, C etc. are matrices. The innovations process v is now a q-dimensional
Wiener process and (4) is replaced by the matrix Riccati equation

P'(1) = A(t)P(t) + P(t)4 (t)T - P()C(f)TC(1)p(1) + I.

17



with initial condition P(O) = covariance matrix of X(O). Here I is the p x p
identity matrix, and ,,T, denotes "transcript." The Kalman gain is now given by
D(t) = P(t)C(t)T.

In Section 3 the q-dimensional version of the orthogonal series sieve estimator
is defined (using the same sieve for each component of g) by

dn

hk(t) L h hk t(),

r=1I

k 1 where

n T
hkr = n Sj? (t) (dyik (t) - Uik1(t)dt)

The kernel estimator h is defined (using the same kernel function and bandwidth for
each component of g) by the q-dimensional version of (15). The estimators § and
are defined as before. Theorems 1-5 extend with the modification that the limiting
distribution in Theorems 4 and 5 is N(0, 012 ). In the proofs of these results, IV"
becomes a q-dimensional Wiener process.

For the results of Section 4 to hold, the additional assumptions that (A(.), I) is
completely controllable and (A(.), C(.)) is completely observable are needed. Con-
dition (A) becomes

(A) f- j14A(t,s)Ilds < oo and f. 0 11'ITA(t,s)jI2ds < o for alit E [OTJ.

Here 11 denotes operator norm. There is essentially no change in the proofs. with
the results of Bittanti et al. (1984) and Roitenberg (1974) being applied in the same
way as before.

The results of Section 5 extend under the condition that for each t G [0. T] the
natrix C(t) has a left inverse C- 1 (t). This will be the case if p < q and C(t) has
column rank p for each t G [0, T]. Then (31) becomes

= -(~'t + tht)

whelire
F(t) = D (t) C(t) C-(t) - C- (t)C'(t) C-' (t)- A (t) C-' (t).

showing that f is identifiable. Note that f is not identifiable if p > q. The limiting
distribution in Theorem 10 becomes N(0, E(1)), where

is 
'



7. Directions for further work

The techniques and results developed in this article are by no means exhaustive.
We are aware of many important questions concerning the problem of nonparametric
inference for linear systems in continuous time for which we have no answer at this
stage. We conclude by listing some of these questions, the first two of which were
mentioned by a referee.

(1) Is it possible to weaken the assumption that A, B and C be known? How
far would the analysis go say, if B was unknown? (This would require an
assumption of sufficient variability in the deterministic inputs ui, i > 1 to avoid
an identifiability problem.) In the same line, how robust are the estimators of
f and g to the specification of A, B and C?

(2) Can anything be said about the optimal choice of the bandwidth in the kernel
estimators? In the cases of density estimation and nonparametric curve esti-
mation there are various techniques for automatically selecting the bandwidth.
It ought to be possible to develop such methods of 'cross-validation' h ere.

(3) Can a test for detecting the preence of a trend (e.g. a test of g : 0) be
developed? More genelaly, it is of interest to test of whether the trend is of
some specified form. As in the case of goodness-of-fit testing for distribution
functions, this might be done by deriving a functional central limit theorem for
an estimator of the cumulative trend function G(.) = fo g(s) ds.
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20. Abstract continued .

to ensure identifiability. The problem is to estimate f and g, and remove them from
the measurement process. Trend removal involves replacing f and g iii the Kalmar filter
X(t) = E(X(t)[.Y )-based on observation of Y-by appropriate estimates. We show that
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